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I. Data Wrangling

In the third and final assignment for STA302, I extend the work done in Assignment 2 and try to find a
multiple linear regression model that home buyers can use to predict the sale price of single-family, detached
homes in two neighbourhoods in the Greater Toronto Area.

The dataset that I will be using was provided by the STA302 team. The data file is called real203.csv, and
it contains 192 observations. I will be randomly sampling 150 data points from the dataset.

To begin, here is the list of the randomly sampled ID’s:

## [1] 5 42 102 7 92 125 188 39 110 142 6 166 185 25 71 107 180 13
## [19] 12 22 41 4 90 86 21 144 75 117 3 177 53 51 193 178 122 54
## [37] 83 218 201 67 20 132 26 114 155 157 55 29 227 81 66 85 24 2
## [55] 70 116 172 183 181 207 38 173 87 16 62 109 96 45 179 118 133 103
## [73] 143 147 48 113 69 97 161 134 137 58 158 176 205 190 175 77 138 174
## [91] 169 31 91 28 33 65 104 186 131 204 73 119 115 11 79 88 40 154
## [109] 151 189 52 168 63 80 126 171 9 68 27 47 84 15 195 61 23 78
## [127] 72 89 139 146 165 43 160 19 32 98 76 145 159 150 112 99 10 14
## [145] 57 56 17 182 141 162

Next, I removed the maxsqfoot variable entirely because at least half the data from this column had missing
entries. Furthermore, below is the list of cases with missing values, after removing the predictor. I decide
to remove these because I would prefer clean data with no NA values anywhere. Unfortunately, my sample
had exactly 11 cases with missing data, so I did not have enough room to remove any influential points.

## ID sale list bedroom bathroom parking taxes location lotsize
## 21 41 1440000 1500000 7 4 4 4623.000 T NA
## 44 114 1570000 1599000 3 4 1 NA T 1703.090
## 47 55 1185000 1198000 3 3 NA 4011.000 T 2278.000
## 50 81 860000 868900 1 2 NA 3676.000 T 703.409
## 66 109 1075000 979900 3 2 NA 4.375 T 2000.000
## 67 96 5100000 5495000 4 5 4 23592.000 T NA
## 76 113 1410000 1375000 5 3 NA 6885.000 T 4380.000
## 121 84 805000 799000 2 2 NA 2654.000 T 2040.000
## 124 61 755000 649000 1 2 NA 3160.000 T 297.350
## 128 89 1200000 1149000 3 2 NA 4114.000 T 2825.000
## 137 76 875000 895000 2 2 NA 3150.000 T 1246.500

After removing these cases, we now have a squeaky clean sample!
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II. Exploratory Data Analysis

Next, let’s quickly classify the variables according to type:

Categorical: location

Discrete: ID, sale, list, bedroom, bathroom, parking

Continuous: taxes, lotsize

Most of these are pretty self explanatory, but for the sale and list variables, I considered them as discrete
because they were whole values in the dataset.

Here are all the pairwise correlations and the scatterplot matrix for all the pairs of quantitative variables in
the data.

Scatterplots and Correlation Coefficients
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## sale list bedroom bathroom parking taxes lotsize
## sale 1.0000 0.9861 0.3918 0.5209 0.0846 0.8087 0.3099
## list 0.9861 1.0000 0.3803 0.5333 0.1295 0.8071 0.3409
## bedroom 0.3918 0.3803 1.0000 0.4943 0.3673 0.4034 0.2599
## bathroom 0.5209 0.5333 0.4943 1.0000 0.2660 0.4582 0.1732
## parking 0.0846 0.1295 0.3673 0.2660 1.0000 0.3441 0.7132
## taxes 0.8087 0.8071 0.4034 0.4582 0.3441 1.0000 0.5200
## lotsize 0.3099 0.3409 0.2599 0.1732 0.7132 0.5200 1.0000

2



In order, from highest to lowest, the predictors correlate with sale price starting with list, then taxes,
bathroom, bedroom, lotsize, and finally parking as the lowest.

Below is a table depicting the strength of the relationships for each predictor and sale price.

## Predictor Correlation Coefficient for Sale Price
## [1,] "list" "0.9861"
## [2,] "taxes" "0.8087"
## [3,] "bathroom" "0.5209"
## [4,] "bedroom" "0.3918"
## [5,] "lotsize" "0.3099"
## [6,] "parking" "0.0846"

As a reminder, correlation coefficient measures how well a predictor and response variable form a linear
relationship with each other. It can range from -1 to 1, and the closer it is to (+/-) 1, the stronger the
relation. We see that the list variable almost has a perfect, positive linear relationship with the response,
while parking almost has no linear relationship with sale price. The taxes variable also has a strong positive
relationship with sale price, while the others have a weak/moderately positive relationship with the dependent
variable.

Lastly for this section, I observe the scatterplot matrix and notice that the parking predictor is the most
likely to violate the assumption of constant variance (holding all other predictors constant). By looking at
the correlation coefficient between it and sale price, as well as the scatterplot between the two variables,
it does not appear that they have a linear relationship. The points do not show a clear trend, and the
scale-location plot confirms this:
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Plotting the square root of the absolute value of the standardized residuals, we see that the constant variance
assumption is violated, as the horizontal line bends upwards in the beginning and limps down near the end.
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III. Methods and Model

Next, we take a look at the actual multiple linear regression model. I fit an additive linear regression model
and have the location predictor as an indicator variable (i.e, the additive term).

Below is a table with the estimated regression coefficients, as well as the p-value for the corresponding t-test
for that coefficient.

## Regression Coefficient Estimated Regress. Coeff. Value P-value for T-test
## [1,] "Intercept" "2.86e+04" "0.61514"
## [2,] "list" "8.24e-01" "< 2e-16"
## [3,] "bedroom" "3.12e+04" "0.04326"
## [4,] "bathroom" "5.49e+03" "0.69853"
## [5,] "parking" "-1.55e+04" "0.08317"
## [6,] "taxes" "1.97e+01" "0.00038"
## [7,] "lotsize" "8.72e-01" "0.7602"
## [8,] "locationT" "9.08e+04" "0.02705"

Note that the name of the additive regression coefficient for location has turned into locationT. By interpreting
the summary and the table, this means that by holding all other coefficients constant, houses in Toronto
are significantly associated with an average increase of 90800 in mean sale price compared to homes in
Mississauga.

The p-value for the global F-test is almost 0, so this implies that it is significant. At least one of the slope
parameters is not 0. Next, we observe that some of the t-tests are significant. For example, the p-value
for the individual t-tests of list price, number of bedrooms, taxes paid and location are all less than the
significance level 0.05.

This concludes that there are indeed some useful explanatory variables for predicting the response.

After, we try to find a parsimonious model using stepwise regression with AIC first, and then BIC. Using
the step() function, R gives us a final model that is different from the original, full model.

The model went from:

## sale ~ list + bedroom + bathroom + parking + taxes + lotsize +
## location

to:

## sale ~ list + bedroom + parking + taxes + location

It appears that the AIC backward elimination method removed two variables: bathroom and lotsize. This
makes sense because the p-values for these predictors were the largest. Every time the step() function
removed a predictor, the AIC value went down slightly (from 3275 -> 3271).

Finally, we will perform backwards elimination with BIC. We use the step() function again, but for the k
argument (which represents the multiple of the number of degrees of freedom used for the penalty), we use
k = log(n) instead of k = 2, where n is the number of data points.

Interestingly enough, the model is different from both previous parts. The final model is:

## sale ~ list + taxes + location
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There are only three predictors left: list, taxes and location. It is perfectly possible that AIC and BIC give
out different model selections. As a recap, BIC penalizes model complexity more heavily. AIC tends to
overfit since the penalty for model complexity is not strong enough. This is sometimes due to the number
of estimated parameters being close to a fraction of the sample size. So, the only way the model summaries
disagree is if AIC chooses a larger model than BIC, which is indeed what happened. (BIC went from 3298
-> 3286)

As another side note, I’m not sure why the AIC/BIC values produced in the step() function differ from the
values obtained from the actual AIC() and BIC() functions. As a result of this, I just referred to the numbers
from the step() function.

IV. Discussions and Limitations

Lastly, we will take a look at the diagnostic plots obtained from the reduced model given to us by using the
backwards elimination method with BIC.

1e+06 2e+06 3e+06 4e+06

−
4e

+
05

6e
+

05

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
96

14
135

−2 −1 0 1 2

−
2

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q
96
14

135

1e+06 2e+06 3e+06 4e+06

0.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
96

14
135

0.00 0.05 0.10 0.15

−
2

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
0.5

0.5
1

Residuals vs Leverage
96

89

74

Starting off with the residuals vs fitted plot, I do not notice a distinctive pattern, and the red line is almost
entirely horizontal. So, it is safe to say this is a null plot. There is no trend or pattern anywhere, so linearity
is satisfied.

Next, the normal Q-Q plot also looks pretty good. The residuals seem to be very well normally distributed,
with the exception of a few points on the top right (Cases 14, 96 and 135). Other than that, normality is
satisfied.

Thirdly, the scale-location plot. It also looks okay, with a few noticeable data points (again, cases 14, 96
and 135). The data is a bit clustered to the left of the plot, but the variance of the points is more or less the
same. Looking at both the residual vs fitted plot and the scale-location plot, constant variance is satisfied.
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Finally, we take a look at the residuals vs leverage plot to see if there are any noteworthy points to take
into consideration. Case 96 shows up once again, as well as some newer points (cases 74 and 89). We may
consider investigating further into these points to improve upon our model.

In conclusion, I’d say we are very close towards a final model. The next steps would definitely be to take a
look at those noteworthy points displayed in the diagnostic plots. They could be heavily affecting the model,
so I would double down on that. Overall, in statistics, it is impossible to obtain a ‘perfect’ model. We just
have to try our best to get a really good estimate, and I say I’ve done a solid job.
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