Comparing Complex Multiple Linear Models for Toronto and Mississauga House Prices

David Pham, 1005349053

December 5, 2020

I. Data Wrangling

In the third and final assignment for STA302, I extend the work done in Assignment 2 and try to find a multiple linear regression model that home buyers can use to predict the sale price of single-family, detached homes in two neighbourhoods in the Greater Toronto Area.
The dataset that I will be using was provided by the STA302 team. The data file is called real203.csv, and it contains 192 observations. I will be randomly sampling 150 data points from the dataset.
To begin, here is the list of the randomly sampled ID's:

\#\#	$[1]$	5	42	102	7	92	125	188	39	110	142	6	166	185	25	71	107	180	13
\#\#	$[19]$	12	22	41	4	90	86	21	144	75	117	3	177	53	51	193	178	122	54
\#\#	$[37]$	83	218	201	67	20	132	26	114	155	157	55	29	227	81	66	85	24	2
\#\#	$[55]$	70	116	172	183	181	207	38	173	87	16	62	109	96	45	179	118	133	103
\#\#	$[73]$	143	147	48	113	69	97	161	134	137	58	158	176	205	190	175	77	138	174
\#\#	$[91]$	169	31	91	28	33	65	104	186	131	204	73	119	115	11	79	88	40	154
\#\#	$[109]$	151	189	52	168	63	80	126	171	9	68	27	47	84	15	195	61	23	78
\#\# [127]	72	89	139	146	165	43	160	19	32	98	76	145	159	150	112	99	10	14	
\#\# [145]	57	56	17	182	141	162													

Next, I removed the maxsqfoot variable entirely because at least half the data from this column had missing entries. Furthermore, below is the list of cases with missing values, after removing the predictor. I decide to remove these because I would prefer clean data with no NA values anywhere. Unfortunately, my sample had exactly 11 cases with missing data, so I did not have enough room to remove any influential points.

\#\#	ID	sale	list bedroom	bathroom	parking	taxes	location	lotsize	
\#\# 21	41	1440000	1500000	7	4	4	4623.000	T	NA
\#\# 44	114	1570000	1599000	3	4	1	NA	T 1703.090	
\#\# 47	55	1185000	1198000	3	3	NA	4011.000	T 2278.000	
\#\# 50	81	860000	868900	1	2	NA	3676.000	T	703.409
\#\# 66	109	1075000	979900	3	2	NA	4.375	T 2000.000	
\#\# 67	96	5100000	5495000	4	5	4	23592.000	T	NA
\#\# 76	113	1410000	1375000	5	3	NA	6885.000	T 4380.000	
\#\# 121	84	805000	799000	2	2	NA	2654.000	T 2040.000	
\#\# 124	61	755000	649000	1	2	NA	3160.000	T	297.350
\#\# 128	89	1200000	1149000	3	2	NA	4114.000	T 2825.000	
\#\# 137	76	875000	895000	2	2	NA	3150.000	T 1246.500	

After removing these cases, we now have a squeaky clean sample!

II. Exploratory Data Analysis

Next, let's quickly classify the variables according to type:
Categorical: location
Discrete: ID, sale, list, bedroom, bathroom, parking
Continuous: taxes, lotsize
Most of these are pretty self explanatory, but for the sale and list variables, I considered them as discrete because they were whole values in the dataset.

Here are all the pairwise correlations and the scatterplot matrix for all the pairs of quantitative variables in the data.

Scatterplots and Correlation Coefficients

\#\#	sale	list	bedroom	bathroom	parking	taxes	lotsize
\#\# sale	1.0000	0.9861	0.3918	0.5209	0.0846	0.8087	0.3099
\#\# list	0.9861	1.0000	0.3803	0.5333	0.1295	0.8071	0.3409
\#\# bedroom	0.3918	0.3803	1.0000	0.4943	0.3673	0.4034	0.2599
\#\# bathroom	0.5209	0.5333	0.4943	1.0000	0.2660	0.4582	0.1732
\#\# parking	0.0846	0.1295	0.3673	0.2660	1.0000	0.3441	0.7132
\#\# taxes	0.8087	0.8071	0.4034	0.4582	0.3441	1.0000	0.5200
\#\# lotsize	0.3099	0.3409	0.2599	0.1732	0.7132	0.5200	1.0000

In order, from highest to lowest, the predictors correlate with sale price starting with list, then taxes, bathroom, bedroom, lotsize, and finally parking as the lowest.

Below is a table depicting the strength of the relationships for each predictor and sale price.

```
## Predictor Correlation Coefficient for Sale Price
## [1,] "list" "0.9861"
## [2,] "taxes" "0.8087"
## [3,] "bathroom" "0.5209"
## [4,] "bedroom" "0.3918"
## [5,] "lotsize" "0.3099"
## [6,] "parking" "0.0846"
```

As a reminder, correlation coefficient measures how well a predictor and response variable form a linear relationship with each other. It can range from -1 to 1 , and the closer it is to $(+/-) 1$, the stronger the relation. We see that the list variable almost has a perfect, positive linear relationship with the response, while parking almost has no linear relationship with sale price. The taxes variable also has a strong positive relationship with sale price, while the others have a weak/moderately positive relationship with the dependent variable.

Lastly for this section, I observe the scatterplot matrix and notice that the parking predictor is the most likely to violate the assumption of constant variance (holding all other predictors constant). By looking at the correlation coefficient between it and sale price, as well as the scatterplot between the two variables, it does not appear that they have a linear relationship. The points do not show a clear trend, and the scale-location plot confirms this:

Scale-Location Plot

Fitted values
Im(sale ~ parking)
Plotting the square root of the absolute value of the standardized residuals, we see that the constant variance assumption is violated, as the horizontal line bends upwards in the beginning and limps down near the end.

III. Methods and Model

Next, we take a look at the actual multiple linear regression model. I fit an additive linear regression model and have the location predictor as an indicator variable (i.e, the additive term).
Below is a table with the estimated regression coefficients, as well as the p-value for the corresponding t-test for that coefficient.

```
## Regression Coefficient Estimated Regress. Coeff. Value P-value for T-test
## [1,] "Intercept" "2.86e+04" "0.61514"
## [2,] "list" "8.24e-01" "< 2e-16"
## [3,] "bedroom" "3.12e+04" "0.04326"
## [4,] "bathroom" "5.49e+03" "0.69853"
## [5,] "parking" "-1.55e+04" "0.08317"
## [6,] "taxes" "1.97e+01" "0.00038"
## [7,] "lotsize" "8.72e-01" "0.7602"
## [8,] "locationT" "9.08e+04" "0.02705"
```

Note that the name of the additive regression coefficient for location has turned into locationT. By interpreting the summary and the table, this means that by holding all other coefficients constant, houses in Toronto are significantly associated with an average increase of 90800 in mean sale price compared to homes in Mississauga.

The p-value for the global F-test is almost 0 , so this implies that it is significant. At least one of the slope parameters is not 0 . Next, we observe that some of the t-tests are significant. For example, the p-value for the individual t-tests of list price, number of bedrooms, taxes paid and location are all less than the significance level 0.05.

This concludes that there are indeed some useful explanatory variables for predicting the response.
After, we try to find a parsimonious model using stepwise regression with AIC first, and then BIC. Using the step() function, R gives us a final model that is different from the original, full model.
The model went from:

```
## sale ~ list + bedroom + bathroom + parking + taxes + lotsize +
## location
to:
## sale ~ list + bedroom + parking + taxes + location
```

It appears that the AIC backward elimination method removed two variables: bathroom and lotsize. This makes sense because the p-values for these predictors were the largest. Every time the step() function removed a predictor, the AIC value went down slightly (from $3275->3271$).

Finally, we will perform backwards elimination with BIC. We use the step() function again, but for the k argument (which represents the multiple of the number of degrees of freedom used for the penalty), we use $\mathrm{k}=\log (\mathrm{n})$ instead of $\mathrm{k}=2$, where n is the number of data points.

Interestingly enough, the model is different from both previous parts. The final model is:
\#\# sale ~ list + taxes + location

There are only three predictors left: list, taxes and location. It is perfectly possible that AIC and BIC give out different model selections. As a recap, BIC penalizes model complexity more heavily. AIC tends to overfit since the penalty for model complexity is not strong enough. This is sometimes due to the number of estimated parameters being close to a fraction of the sample size. So, the only way the model summaries disagree is if AIC chooses a larger model than BIC, which is indeed what happened. (BIC went from 3298 -> 3286)

As another side note, I'm not sure why the AIC/BIC values produced in the step() function differ from the values obtained from the actual AIC() and BIC() functions. As a result of this, I just referred to the numbers from the step() function.

IV. Discussions and Limitations

Lastly, we will take a look at the diagnostic plots obtained from the reduced model given to us by using the backwards elimination method with BIC.

Starting off with the residuals vs fitted plot, I do not notice a distinctive pattern, and the red line is almost entirely horizontal. So, it is safe to say this is a null plot. There is no trend or pattern anywhere, so linearity is satisfied.

Next, the normal Q-Q plot also looks pretty good. The residuals seem to be very well normally distributed, with the exception of a few points on the top right (Cases 14, 96 and 135). Other than that, normality is satisfied.

Thirdly, the scale-location plot. It also looks okay, with a few noticeable data points (again, cases 14, 96 and 135). The data is a bit clustered to the left of the plot, but the variance of the points is more or less the same. Looking at both the residual vs fitted plot and the scale-location plot, constant variance is satisfied.

Finally, we take a look at the residuals vs leverage plot to see if there are any noteworthy points to take into consideration. Case 96 shows up once again, as well as some newer points (cases 74 and 89). We may consider investigating further into these points to improve upon our model.

In conclusion, I'd say we are very close towards a final model. The next steps would definitely be to take a look at those noteworthy points displayed in the diagnostic plots. They could be heavily affecting the model, so I would double down on that. Overall, in statistics, it is impossible to obtain a 'perfect' model. We just have to try our best to get a really good estimate, and I say I've done a solid job.

